Unsupervised learning of object detectors for everyday scenes

نویسنده

  • Najeed Ahmed Khan
چکیده

This paper proposes an unsupervised learning framework in which models of objects’ appearance classes are learned using their spatio and temporal information, from video. These models are used to detect objects of different classes in the everyday scene. The proposed technique combines appearance and motion features in a weighted combination framework resulting in models of object classes. Thus, better detection results are achieved compared to foreground based tracking and to those obtained in a supervised way. Since the proposed technique is unsupervised, a good detection rate is achieved without manual effort expended in data collection and labelling. Experimental results confirm that the proposed framework offers a promising solution for detection in unfamiliar scenes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Learning of Semantics of Object Detections for Scene Categorization

Classifying scenes (e.g. into “street”, “home” or “leisure”) is an important but complicated task nowadays, because images come with variability, ambiguity, and a wide range of illumination or scale conditions. Standard approaches build an intermediate representation of the global image and learn classifiers on it. Recently, it has been proposed to depict an image as an aggregation of its conta...

متن کامل

Unsupervised and Transfer Learning under Uncertainty - From Object Detections to Scene Categorization

Classifying scenes (e.g. into “street”, “home” or “leisure”) is an important but complicated task nowadays, because images come with variability, ambiguity, and a wide range of illumination or scale conditions. Standard approaches build an intermediate representation of the global image and learn classifiers on it. Recently, it has been proposed to depict an image as an aggregation of its conta...

متن کامل

Unsupervised Learning of Shape-Motion Patterns for Objects in Urban Street Scenes

Tracking in urban street scenes is predominantly based on pretrained object-specific detectors and Kalman filter based tracking. More recently, methods have been proposed that track objects by modelling their shape, as well as ones that predict the motion of objects using learned trajectory models. In this paper, we combine these ideas and propose shape-motion patterns (SMPs) that incorporate s...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

On the usefulness of attention for object recognition

Today’s object recognition systems have become very good at learning and recognizing isolated objects or objects in images with little clutter. However, unsupervised learning and recognition in highly cluttered scenes or in scenes with multiple objects are still problematic. Faced with the same issue, the brain employs selective visual attention to select relevant parts of the image and to seri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011